REPORT DOCUMENTATION PAGE		Form Approved		
	Stimated to average 1 hour per response, including the time for reviewing instruct	OMB No. 0704-0188		
data needed, and completing and reviewing this collection of	of information. Send comments regarding this burden estimate or any other aspe-	ct of this collection of information, including suggestions for reducing		
4302. Respondents should be aware that notwithstanding	parters Services, Directorate for Information Operations and Reports (0704-0188), any other provision of law, no person shall be subject to any penalty for failing to o			
valid OMB control number. PLEASE DO NOT RETURN YOU. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
14-06-2012	Technical Paper	1 Oct 2010- 14 Jun 2012		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
DoD Center of Excellence to Support Theory and Experiments on		In House		
Filamentation Topics for DDR&E's Recent MURI Initiatives		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
		SC. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER		
W.P. Roach, W.P. Latham, M.R. Zunoubi, A. Schmitt-Sody, C. Lu, N. Wolfe, A.				
Lucero		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
		D00Y		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT		
A: E B 111 /		NUMBER		
Air Force Research Laboratory 3550 Aberdeen Ave SE				
Kirtland AFB, NM 87117-5776				
Kittalia Al D, NW 8/11/-3//0				
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory		AFRL/RDH		
3550 Aberdeen Ave SE				
Kirtland AFB, NM 87117-5776		11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
		AFRL-RD-PS-TP-2013-0004		
12. DISTRIBUTION / AVAILABILITY STATI				
Approved for public release; dist	ribution unlimited.			
13. SUPPLEMENTARY NOTES				
Briefed at DEPS conference. 377ABW	-2012-0688. "Government Purpose Rights"			
14. ABSTRACT	of council and novy achieving (5 TW) Dranger	sta lagan ta 21 e 51 aita hag hagan		
	nfigured and now achieving 6.5 TW. Propaga			
	on: Media with second and third harmonic ge			
	that have been now simplified. Work on com			
We have deviated from Farnum/	Kutz work to include a more uniform definiti	ion for dispersion. We have kept the		
2 nd order derivatives in time for a finer look at dispersion. Under SEVA and other assumptions or equations reduce				
to a form previously published but little computational work on them is available. Computational efforts underway:				
New results from a RK5 & FFT methodology and 6-pt Crank-Nicholson for our simplest form. We will move to				
solve the more complicated forms numerically in the future. Couple this work with plasma work by out group.				
solve the more complicated form	is numerically in the future. Couple this work	with plasma work by out group.		
45 CUD IECT TEDME				
15. SUBJECT TERMS				

19a. NAME OF RESPONSIBLE PERSON

William Roach
19b. TELEPHONE NUMBER (include area

SAR

17. LIMITATION OF ABSTRACT

18. NUMBER

36

code)

505-846-0879

OF PAGES

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

a. REPORT

Unclassified

DoD Center of Excellence to Support Theory and Experiments on Filamentation Topics for DDR&E's Recent MURI Initiatives

DEPS USL Workshop 14 June 2012

W.P. Roach, W.P. Latham, M.R. Zunoubi, A. Schmitt-Sody, C. Lu, N. Wolfe and A. Lucero

Air Force Research Laboratory
Advanced Electric Laser Branch
Kirtland AFB, NM

ACKNOWLEDGEMENTS

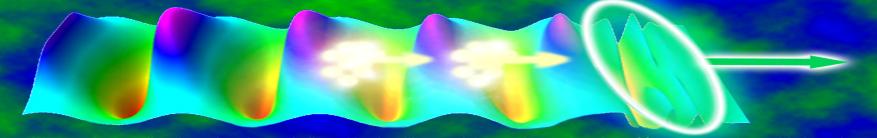
Dr. Richard A. Albanese, Collaborator Mr. Richard L. Medina, Collaborator San Antonio, TX

Professor Jerome V. Moloney, Collaborator University of Arizona Tucson, AZ

Dr. Tom Nelson, Collaborator **Electromagnetics Division** Sandia National Laboratories Kirtland AFB, NM


Dr. Arje Nachman & Dr. Enrique Parra Air Force Office of Scientific Research Ballston, VA

Overview



- USPL Laboratory design, building, and updates at AFRL/RD
- Progress on Nonlinear Propagation
 - AFOSR MURI Collaboration
- Theoretical and Computational efforts underway
 - New results from a RK5 & FFT methodology and 6-pt Crank-Nicolson scheme
- Summary and Conclusions

Unique Characteristics To Potentially Exploit In USPL

A laser pulse traveling through a plasma, indicated by the ellipse at right, accelerates bunches of free electrons (center) in its wake

P. Preuss, BELLA: The Next Stage in Laser Wakefield Acceleration, Lawrence Berkley National Laboratory News Center, April 15, 2008. http://newscenter.lbl.gov/feature-stories/2008/04/15/bella-the-next-stage-in-laser-wakefield-acceleration/

- USPL Characteristics: Very short pulse durations (notionally 10ps-10fs)
 - High peak intensity and electric fields and broad spectral bandwidth
 - Effects
 - Self induced nonlinear optics
 - Mulitphoton ionization (filamentation) plasma creation
 - Material modification / damage
 - Multi-spectral generation (RF, THz, EUV, x-rays, e⁺e⁻ pairs)
- Electron acceleration 4
 377ABW-2012-0688 Approved for public release; distribution is unlimited.

Importance of Laser Filaments

Operational uses

- Filamentation process is the leading candidate to localize electromagnetic fields for sensing, imaging, and non-imperceptible communications (Low probability of intercept communication)
- Design new models for non-kinetic attack which offer covert and limited or no collateral damage
- New knowledge is required to address the problem of efficient and effective communication through plasma shields which isolate the space shuttle on atmosphere re-entry and clearly isolate the United States Air Force super-sonic vehicle from ground communications

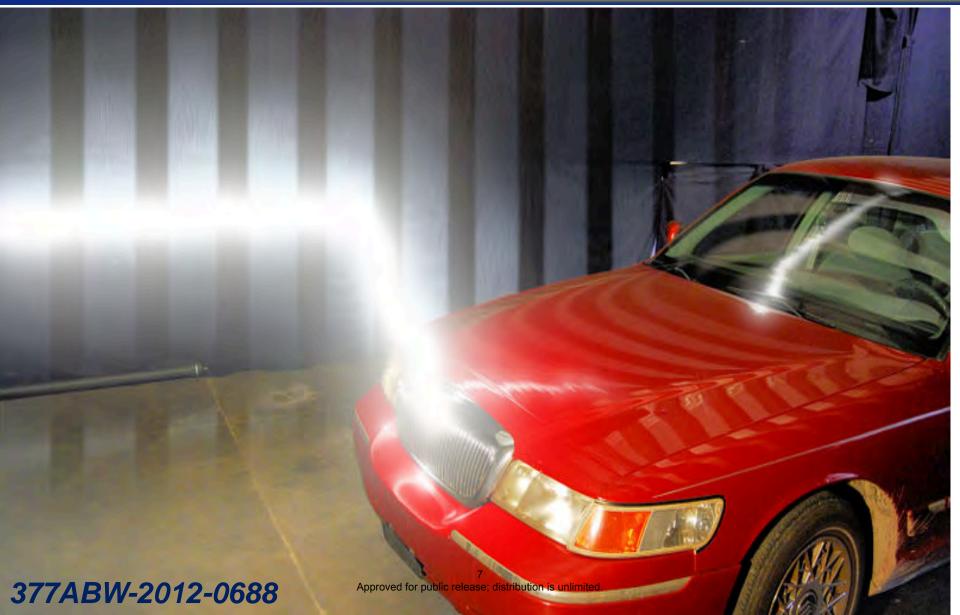
Capability Sought

- That fs induced filaments may act as an effective waveguide in both the longitudinal and transverse directions
- If it is plausible to confine external EM fields, both CW and pulsed sources, within a small extended filament that can be constructed in free space
 - for covert sensing in detail, imaging and materials investigation

Basic Science

- We seek to understand fs pulses leading to filamentation and resultant plasmas
- fs induced filamentation with external EM field interactions and resultant plasmas are excellent basic science medium to attempt to answer the fundamental questions posed above

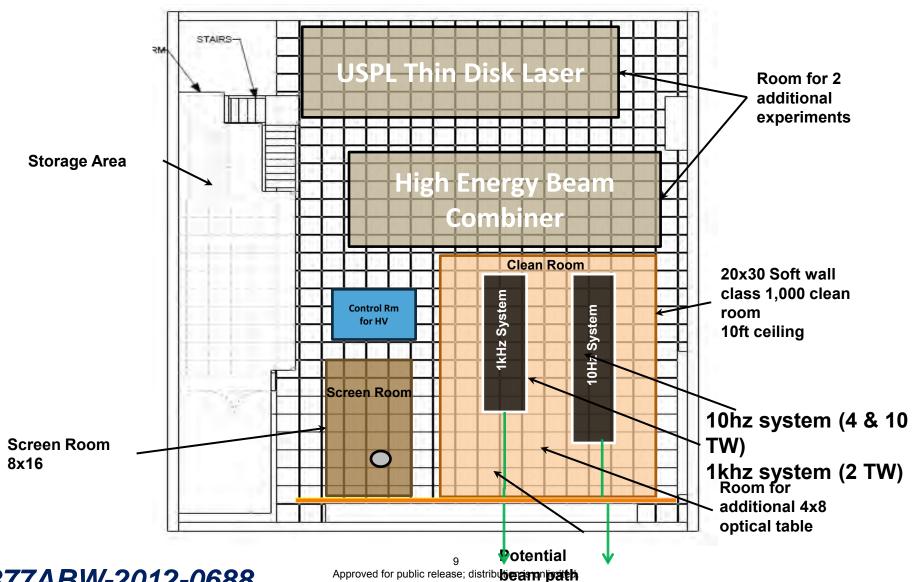
USPL Technologies Research:



- DoD via HEL-JTO is rethinking USPL investment strategy, DDR& expending \$15M, "Femtosecond (fs) filamentation as leading candidate to localize electromagnetic (EM) fields"
 - Sensing, imaging, and non-imperceptible communications (e.g. hypersonic UAVs)
- AFRL/RD Based Defense S&T Strategy for Mid-Term 2017-2022
 - Low collateral damage, non-lethal
- Capabilities Sought:
 - DoD USPL Investment Strategy
 - Interaction of USPL induced filaments with High E-Fields
 - Covert sensing in detail, imaging and materials investigation
 - New USPL mathematical and computational models

We are not interested in!

Nor This!



Ultra Short Laser Lab Layout Plan

Our Building History in 2010

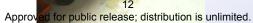
- Turn on Pump Lasers from Bldg. 243
- Demolition lab
- Addition Electrical Supply

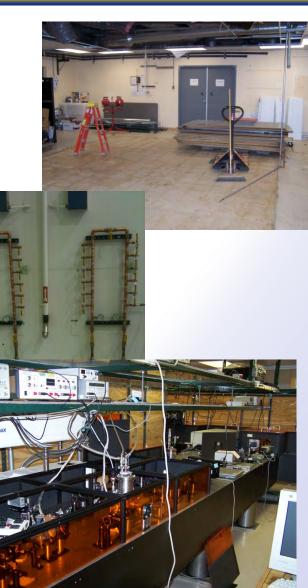
Original Drawings New Paint and a Raised Floor

- Move Temporary shed of water chiller
- Temporary Cooling
- Drawings to transfer optics
- Paint

Raised Floor

Electrical/Plumbing/Optics

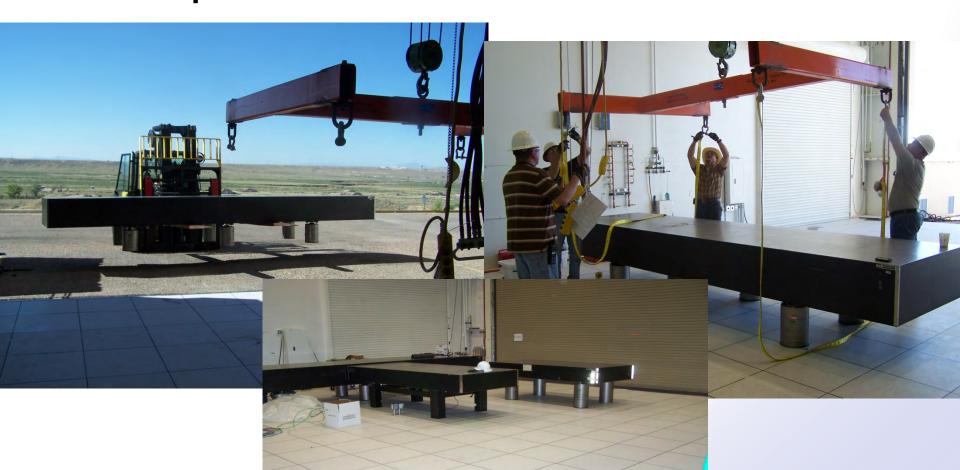

- Additional Power 2-Electrical Panels
- Water Manifolds
- Transfer Optics to Breadboards
- Disassemble Screen



377ABW-2012-0688

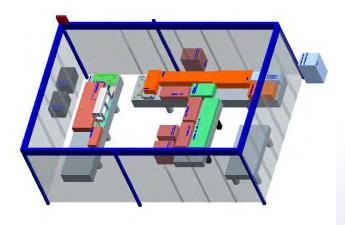
Moving Day June 2010

- Move 20ft & 16ft Optical tables
- Optics/Lasers
- Equipment



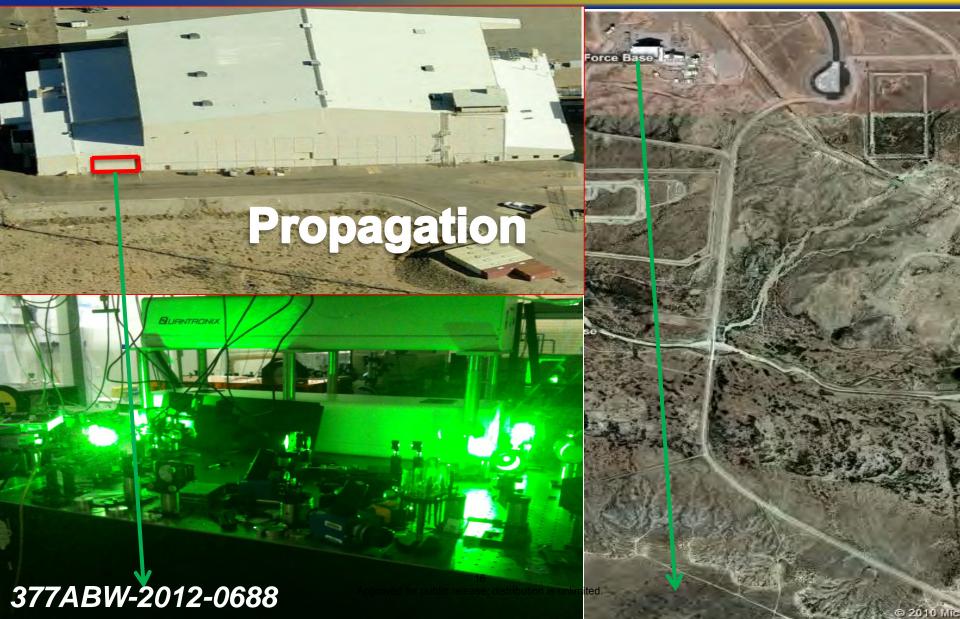
Brining It All In!

Place 6 optical tables in lab



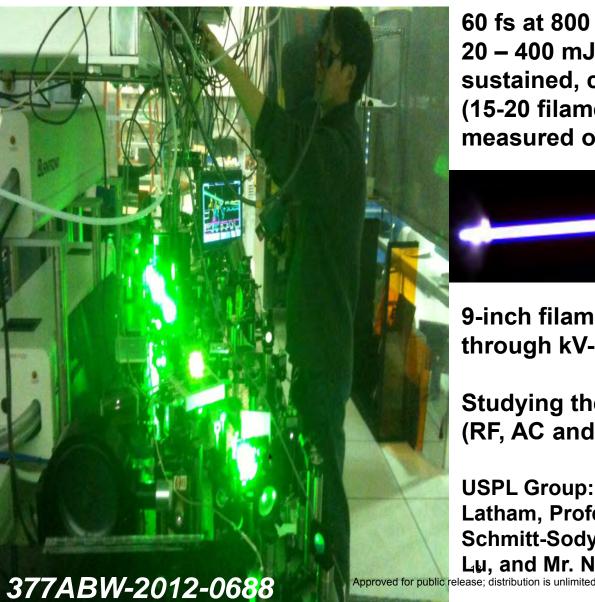
Original Placement

- Optical tables in Lab & floating (3)
- Water manifolds
- Lab automation
- Clean room being built
- Work in Process



AFRL/RDLA RANGE: 2k and 5k pre-designated ranges

Krispy Kreme Dream Team


The USPL Lab was only possible due to the following Team

AFRL/RDLA USPL Filamentation Team Update

60 fs at 800 nm 20 - 400 mJ, ~ 6.5 TW Max sustained, continuous filament bundles (15-20 filaments at 250 mJ) measured out to 10m

9-inch filament bundle propagation through kV-level E-Field

Studying the interaction of electric fields (RF, AC and Optical) with the filament

USPL Group: Dr. Erik Bochove, Dr. W.P. Latham, Professor M.R. Zunoubi, Dr. Andreas Schmitt-Sody, Mr. Adrian Lucero, Mr. Chunte Lu, and Mr. N. Wolfe

USPL Technologies Research: In Support of DoD DDR&E MURI

Research	Oh	iacti	VAC
Nescalcii		Jecui	V G S
	-		

Write HEL/JTO USPL strategic investment strategy

Demonstrate filamentation shorting in high voltage transformers for counter electronics

Characterize fs-laser filament physics necessary for coupling/confining external EM-Fields

Develop computational models for fs propagation as an extended free space waveguide

377ABW-2012-0688

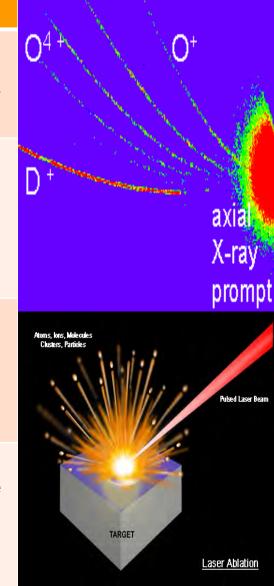
Areas of Discovery

Military Utility of USPL

Wednesday 13 June 2012 Afternoon, Ultrashort Laser
Physics, Novel Material Interactions and
Measurements 2:05-2:30 FOUO-C

Effect may trigger circuit fault

leading to electrical grid shut down.


Wednesday 13 June 2012 Afternoon Ultrashort Laser Physics, Novel Material Interactions and Measurements 2:30-2:55 FOUO-C

Microwave and RF guiding with a single filament

Wednesday 13 June 2012 Afternoon **Ultrashort Laser Physics, Novel Material Interactions and Measurements** 2:30-2:55 FOUO-C

New mathematical & computational models within in the framework of specific observed USPL phenomenon and V&V

Approved by Advitage 28612 Morning , Novietinear Propagation Physics , 8:10-8:35 & 8:35-9:00

Why Do We Care?

Iraq Diary: Jammers Beat Bombers (Which May Be Bad News) Read More

http://www.wired.com/dangerroom/2007/09/iraq-diary-jamm/#ixzz0qvWArigQ

Navy: More Bomb-Blasting Ray Gun Please

http://www.wired.com/dangerroom/2010/06/militarys-mystery-ray-gun-to-zap-bombs-change-the-face-of-this-war/#ixzz0qvVH5T8z

AFRL/RDLA_RHDO USPL Filamentation Team

60 fs at 800 nm

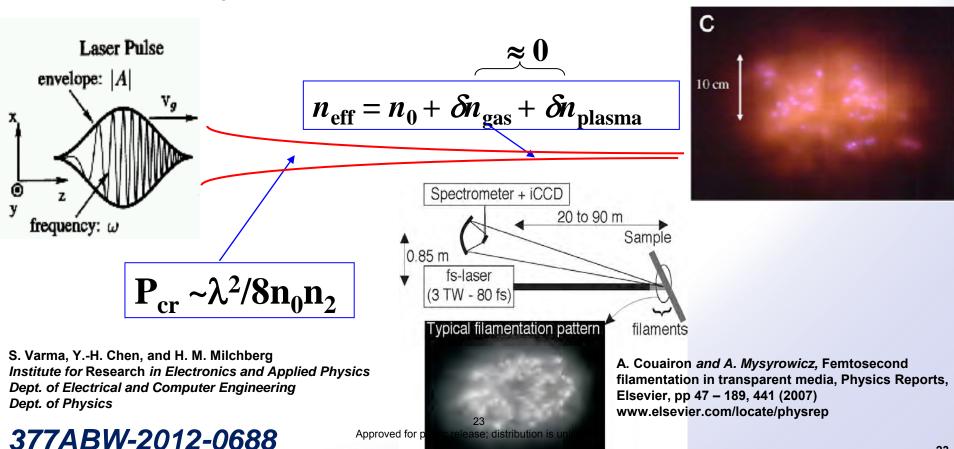
60 – 140 mJ, ~ 2.1 TW Max

sustained, continuous filament bundles (8-10 filaments at 140 mJ)

measured out to 4m

9-inch filament bundle propagation through kV-level E-Field

Measuring the filament interaction with a very high E-Field allows us to begin to describe the physics of the filaments



Filamentation Characterization

Dr. Andreas Schmitt-Sody NRC Fellow

• High power, femtosecond laser beams propagating through air form extremely long filaments due to nonlinear self-focusing ($\chi^{(3)}$) dynamically balanced by ionization and defocusing.

Propagation Into The Hangar ~80fs at 800 nm and 100 mJ

Propagation Into The Hangar

a. Filamentation with conical emission of 800 nm ~ 80 fs & ~ 200 mJ (70 m)

b. White-Light generation at 800 nm ~ 80 fsat ~ 1 m focus (at 3 m) & ~ 20 mJ

Heater-Igniter Experiments

MURI AFRL/UA Collaborative Experiments

- 1. Purpose is to extend the life time and the number of ions within the filament.
- Igniter pulse was 400 nm at ~ 100 fs and ~1-2 mJ
- The delay between the igniter and the heater pulses was between 100 – 500 ps

1

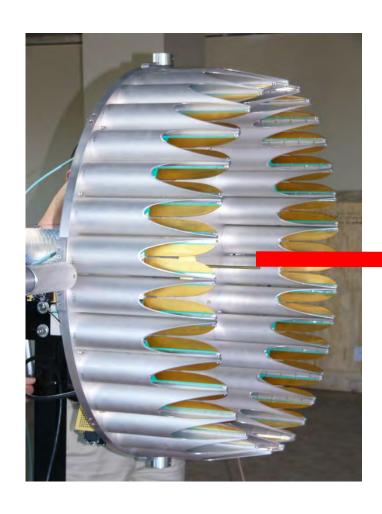
Igniter: Faint plasma

Igniter +heater: increase in brightness, e.g. more plasma

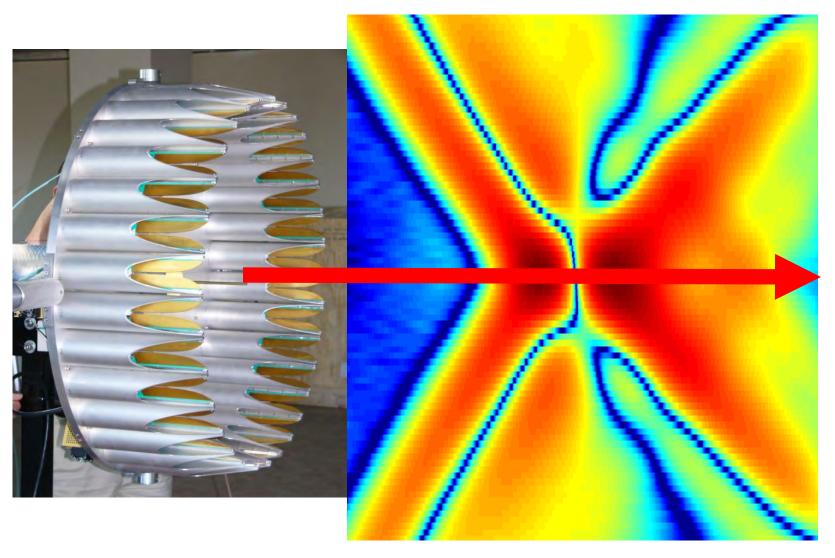
Heater: avalanche breakdown and bubbles.

a. Heater at 800 nm ~ 200 ps & ~ 200 mJ

Work In the late 90's



Fields and Plasma Filaments


Fire laser through center

of circular array

Fields and Plasma Filaments

Summary and Conclusions

USPL Laboratory Update

- Reconfigured and now achieving 6.5 TW
- Propagate laser to 2k & 5k site has begun

Progress on Nonlinear Propagation

 Media with second and third harmonic generation present mathematical complexities in previous results that have been now simplified

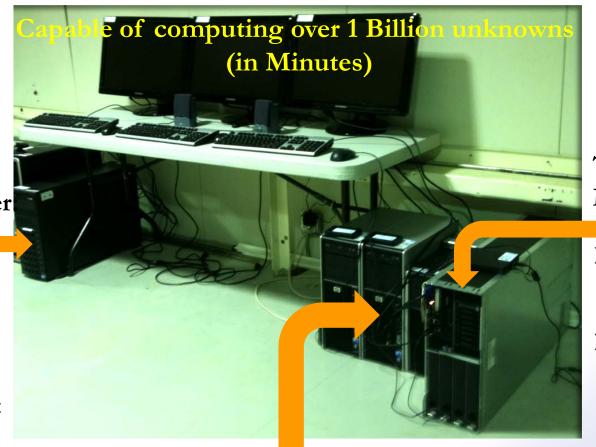
Work on competing nonlinearities and propagation

- We have deviated from Farnum/Kutz work to include a more uniform definition for dispersion
- We have kept the 2nd order derivatives in time for a finer look at dispersion.
- Under SEVA and other assumptions our equations reduce to a form previously published but little computational work on them is available

Computational efforts underway

- New results from a RK5 & FFT methodology and 6-pt Crank-Nicholson for our simplest form
- We will move to solve the more complicated forms numerically in the future
- Couple this work with plasma work by our group

BACK UP SLIDES


High-Performance GPU Computing Enclave

24-Core CPU Supercomputer

➤ 18 GBs of dedicated memory

Over 3Teraflops/sfloating pointperformance

Tesla Compute Machine:

- ➤ 48 GBs of dedicated memory
- Over 9Teraflops/sfloating pointperformance

Basic HP Desktops (×3):

- ➤ 18 GBs of dedicated memory
- Pover 3 Teraflops/s floating point performance

 Approved for public release; distribution is unlimited.

 Performance

A Numerical Approach to Solving Our Equations

• By introducing a coordinate system which moves with an average group velocity, $v_g' = \frac{2}{k_1' + k_2'}$, in equations (I.) and (II.) where:

$$\xi = \varepsilon z$$
, $\tau = (t - z/v_g^{\prime})$, $\delta = \frac{1}{2}(k_1^{\prime} - k_2^{\prime})$

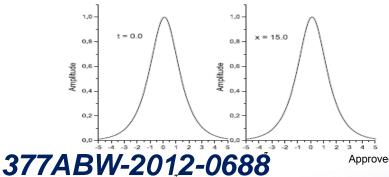
These equations may be cast into a compact form:

$$i\partial_{\tau}U + i\delta\partial_{\xi}U + i\Gamma_{1}U + fU^{*}Ve^{-iR\delta\xi} + [a|U|^{2} + b|V|^{2}]U = 0$$
$$i\partial_{\tau}V + i\delta\partial_{\xi}V + i\Gamma_{2}V + gV^{2}e^{iR\delta\xi} + [c|V|^{2} + d|U|^{2}]V = 0$$

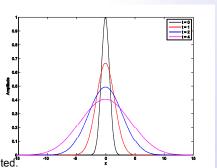
A Numerical Approach to **Solving Our Equations**

Using a new 6-point unconditionally stable FD –TD scheme, we write:

$$i\frac{U_{i}^{j+1} - U_{i}^{j}}{\tau} + i\delta \frac{U_{i+1}^{j+1} + U_{i+1}^{j} - U_{i-1}^{j+1} - U_{i-1}^{j}}{4h} \qquad i\frac{V_{i}^{j+1} - V_{i}^{j}}{\tau} - i\delta \frac{V_{i+1}^{j+1} + V_{i+1}^{j} - V_{i-1}^{j+1} - V_{i-1}^{j}}{4h} + i\Gamma_{1}\frac{U_{i}^{j+1} + U_{i}^{j}}{2} + f\frac{U_{i}^{*j+1} + U_{i}^{*j}}{2} \frac{V_{i}^{j+1} + V_{i}^{j}}{2} e^{-iR\xi_{i}^{j}} \qquad + i\Gamma_{2}\frac{V_{i}^{j+1} + V_{i}^{j}}{2} + g\left(\frac{U_{i}^{j+1} + U_{i}^{j}}{2}\right)^{2} e^{iR\xi_{i}^{j}} + \left(a|U_{i}^{j+1/2}|^{2} + b|V_{i}^{j+1/2}|^{2} \frac{U_{i}^{j+1} + U_{i}^{j}}{2}\right) = 0 \qquad + \left(c|V_{i}^{j+1/2}|^{2} + d|U_{i}^{j+1/2}|^{2} \frac{V_{i}^{j+1} + V_{i}^{j}}{2}\right)$$


$$i\frac{V_i^{j+1} - V_i^j}{\tau} - i\delta \frac{V_{i+1}^{j+1} + V_{i+1}^j - V_{i-1}^{j+1} - V_{i-1}^j}{4h}$$

$$+ i\Gamma_2 \frac{V_i^{j+1} + V_i^j}{2} + g\left(\frac{U_i^{j+1} + U_i^j}{2}\right)^2 e^{iR\xi_i^j}$$


$$+ \left(c|V_i^{j+1/2}|^2 + d|U_i^{j+1/2}|^2 \frac{V_i^{j+1} + V_i^j}{2}\right) = 0$$

Some early results for coupled NLSE applied to multi-mode optic fibers using a Matlab implementation (Note: a dispersion term was added in the form of ∂_{zz})

Soliton Solution (includes dispersion and nonlinearity

Effect of dispersion on Gaussian pulse (includes dispersion term only)

